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Abstract 

Textures of melt-spun icosahedral and decagonal quasi- 
crystals have been analysed via texture simulation by a 
sum of limited fibre components. The model has been 
extended to include the axial textures with an anisotropic 
spread of the texture axis. An orientation distribution 
function of the textured icosahedral quasicrystal has been 
calculated. It is shown that textured decagonal structures 
may exhibit an anisotropy of physical properties even in 
the ribbon plane. 

may calculate half of the series-expansion coefficients for 
cubic crystalline symmetry (only even coefficients), only 
30% of the coefficients may be obtained for hexagonal 
crystals (Bunge, 1987). 

The ghost phenomena of ODF reproduction may be 
by-passed by the direct ODF approximation in an 
analytical form. This paper deals with the investigation 
and simulation of textures (both pole figures and ODFs) 
of the quasicrystal phases with icosahedral and decagonal 
symmetries. 

1. Introduction 

Alloys with quasiperiodic structures and rotational 
symmetries 'forbidden' by conventional crystallography 
have attracted much attention because of their unusual 
properties. Shechtman, Blech, Gratias & Cahn (1984) 
first observed such phases and detected 5-fold rotational 
symmetry. Later, quasicrystals with 8-fold, 10-fold and 
12-fold axes were discovered; for a review, see Kelton 
(1994). 

Melt spinning is known to be a method of quasicrystal 
fabrication. In the case of conventional crystals, such a 
solidification technique gives rise to crystallographic 
texture formation through preferred growth and/or 
nucleation (Chang, Bye, Laxmanan & Das, 1984; Arai, 
Tsutsumitake & Ohmori, 1984). Melt-spun quasicrystals 
also turn out to have a texture (Ino, Edagawa, Kimura, 
Takeuchi & Nasu, 1987; Sugawara, Edagawa, Oda, Seki, 
Ito, Ino, Kimura & Takeuchi, 1989; Edagawa, Sugawara, 
Oda, Seki, Ito, Ino, Kimura & Takeuchi, 1991). The 
texture can change the anisotropy of the physical 
properties and, therefore, must be taken into account. 

To determine the anisotropy of the physical properties 
of textured.phases, the function of the distribution of 
structure elements on orientations [orientation distribu- 
tion function (ODF)] must be known (Bunge, 1987). The 
ODF is usually reproduced by numerical techniques from 
diffraction data of the pole-figure type. This method is 
not derived for quasicrystal symmetries yet. Moreover, it 
is known (Bunge, 1987) that, if the orientation symmetry 
is higher, the ghost effects of numerical ODF reproduc- 
tion must be more pronounced. For example, while we 

©1996 International Union of Crystallography 
Printed in Great Britain - all rights reserved 

2. Description of crystallographic textures 

To approximate real textures in an analytical form, a 
number of approaches have been developed (Bunge, 
1987; Matthies, 1982; Savelova, 1984; Dnieprenko & 
Divinski, 1992; Eschner, 1992; Nikolaev, Savelova & 
Feldmann, 1992). These models differ both in the form 
of their analytic presentations and in their approach to 
texture description. 

In the present work, the textures of melt-spun 
quasicrystals are analysed. In such a case, both axial 
textures and textures with a dispersion concentrated 
around preferred orientations may arise in crystalline 
ribbons, with the axial textures being the most frequently 
observed (Arai, Tsutsumitake & Ohmori, 1984). The 
presence of some directions or texture axes, which allow 
the texture dispersion to be described by rotations around 
these axes, is a common feature of all these textures. This 
is dictated by specific crystallization conditions primarily 
by the direction of the temperature gradient and the 
conditions of nucleation and growth. Note that these 
characteristic directions may not coincide with the 
direction of the normal to the ribbon plane. In the very 
exceptional case of isotropic dispersion around preferred 
orientations (the so-called spherical components), one 
may resort to the model of Bunge (1987) or Matthies 
(1982) to describe analytically these textures. 

However, both axial textures and textures intermediate 
between axial and spherical have been observed in melt- 
spun quasicrystals. All these textures are markedly 
anisotropic with the characteristic axis of the dispersion 
formation. In this case, the approach based on texture 
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description by a superposition of limited fibre compo- 
nents is likely to be the most applicable (Dnieprenko & 
Divinski, 1992, 1993, 1994). It is noteworthy that all 
other techniques by which the anisotropic texture 
dispersions may be approximated (Savelova, 1984; 
Eschner, 1992; Nikolaev et al., 1992) do not use the 
above-mentioned presentations about the texture axes. 

The main feature of our approach is that the spread of 
each texture component must be described in its own 
local coordinate system. These systems are strongly 
connected with the texture axes introduced above for 
each component (in general, the texture may consist of a 
number of different components). In this work, however, 
all the following considerations will be carried out for a 
single-component texture to simplify the mathematical 
treatment. Generalization to the case of multicomponent 
textures is obvious. For most real textures, the position of 
the texture axes can be readily determined by experiment 
(Dnieprenko & Divinski, 1992) and textures of quasi- 
crystals are among them. The best choice of a zero 
approximation for its position is an orientation of the 
highest maximum in the pole figures and the precise 
position can be found by a subsequent iteration 
procedure (Dnieprenko & Divinski, 1993). 

Thus, we will describe the ODF f of a quasicrystal 
structure in the local coordinate system by the following 
expression: 

f (g×) = A exp{-yz2/2o-2} exp{-  ½[(IVi + V3I 

- o ,  + I,,3 - i× ,  + v311)/2o-212} • (1) 

0 _<< 9)2 "< 2Zr/5 for the icosahedral quasicrystal symme- 
try and the orthotropic texture symmetry. 

To allow for the symmetry relations, we have to take 
into account that there are M crystallographically 
identical orientations of the preferred maximum. Thus, 
we have 

M 

fB(9)l,  ¢~, 9)2) = E f(v} O, Y2 (0, ?,~0), 
1=1 

where °, y O, are , etermi,e,  by 

g~) = tg(oOl -igB[gol -lg$. 

(3) 

(4) 

Here, l is an index that numbers consecutively these 
crystallographically identical orientations. 

3. Pole figures 

The pole density Plnl(Y) of the pole figure {IZI} can be 
calculated as follows: 

M 2rr 

P{I~I(Y) = ~ (2zrM) -1 f f ( Y l  O, y~i), y(0~3, d& (5) 
i=1 0 

where g~9 = go'g(~S2¢8)[g°]-~go; g g ) i s  the matrix of 
rotations and is determined by the condition y - - -  llig 0), 
where 6 i, i -  1 ..... M, are equivalent planes from the 
{IZI} family; $2(6) is the matrix of rotation by the 8 angle 
around y. The rest of the designations are the same as in 
(3) and (4). 

The Eulerian angles gr, = (V1, V2, V3) define the grain 
orientation with respect to the local coordinate system 
introduced above; o" l, o" 2, o" 3 are the spread parameters. 
The °'3 value determines the length of the regions in the 
gr, orientation space with a constant orientation density. 
Now we must take into account the position of the local 
coordinate system (or the texture axis) with respect to the 
extemal directions. Thus, grain orientation g8(9)1, ~,  9)2) 
in the external coordinate system of a sample may be 
obtained via the angles yl, V2, V3 by 

-1 0 
gB = go&,g, = gog×[go] gB, (2) 

where g0(~0, 00, 9)0) specifies the transformation to the 
local coordinate system and gl(t/q, 01, 9)1) does a back- 
transformation to the 9)1, 45, 9)2 angles. In (2), we take 
into account that the gr matrix is a unit one if the 
?/1, Y2, Y3 angles equal zero, and all the rotations go, gl 
must determine the preferred orientation gO. 

The ODFf(gB) must satisfy symmetry relations of the 
following type: f (gB) -- q s - - f (gB 'gs 'gs ) ,  where gq and g~ are 
the elements of the point groups G q and G s and they 
describe the symmetry transformations of the quasicrys- 
tal and the sample, respectively. Taking this into account, 
we find that the 'elementary cell' in the orientation space 
gB = (9)1, 4~, 9)2) will be 0 < ~01 < n'/2, 0 < q~ < ~r/2, 

4. Textures of  melt spinning 

Let us consider the texture types that are most often 
formed in the process of rapid solidification. 

The texture of the icosahedral phase in melt-spun 
A172Si6Fes.sMn16.5 may be described as an axial texture 
with a spherical dispersion of the texture axis (Ino et al., 
1987). The texture of i-Abo0Li30CUl0 exhibits dispersion 
close to the axial one but with a pronounced anisotropy 
of the spread of the texture axis with respect to the 
normal to the ribbon plane (Sugawara et al., 1989). In 
this case, the angular spread of the texture axis in the 
ribbon direction is markedly smaller than that along the 
transversal direction. 

Moreover, we found that a similar texture is formed in 
melt-spun i-A186Fe14, see Fig. 1. Here, however, the 
texture-axis dispersion is less anisotropic and is inter- 
mediate between the above-mentioned two limiting 
texture types. In all these cases, the normal to the ribbon 
plane serves as a crystallization axis and coincides with 
the 5-fold crystallographic direction [100000]. The same 
orientation of growth direction has been found in 
i-A1LiCu (Gaybe, 1987) and in i-TiFeMnSi (Zhang & 
Kelton, 1992). Nevertheless, it has been reported in a 
number of studies that growth from the liquid may be 
most rapid along the threefold direction (Shaefer, 
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Bendersky, Shechtman, Boettinger & Biancaniello, 
1986; Nissen, Wesichen, Beeli & Gsanady, 1988). Thus, 
the crystalloraphic orientation of the growth direction is 
likely to depend on particular nucleation and growth 
conditions. 

We also investigated the direction of preferred 
crystallization in decagonal quasicrystals under rapid 
solidification. In d-m162Cuz0ColsSi 3 ribbon, we observed 
an axial texture with a marked anisotropy of dispersion 
of the texture axis, see Fig. 2. The 10-fold axis is the 
texture axis in this case and it is deflected from the 
normal to the ribbon plane by a small angle of about 5 °. 

Axial textures with virtually spherical dispersion are 
very simple and can be approximated by (1) at o.2 = oo 
and an arbitrary value of o" 3 . When there is some 
deflection of the texture axis from the normal position, 
the analytic form of (1) remains the same since it refers to 
the local coordinate system of the texture axis. Only 

values of rotations gl that transform the texture 
dispersion previously formed to the final position will 
change. By such means, the pole figures of i-A186Fe14 
(Fig. 1) can be directly simulated both in our approach 
and with Bunge-type model functions. 

However, to simulate the quasicrystal textures, the 
anisotropic spread of the texture-axis position relative to 
the sample coordinate system must be introduced (from 
angles gO, i.e. by the position of the preferred orientation 
in this coordinate system). Also, the crystallographic 
position of the texture axis must be unchanged, i.e. go 
remains constant in (2) and (4). To include the 
anisotropic spread of the texture axis, we write 

M 
fB(~O1, (~), ~02) = M -1 ~ f F(g~)f(Y} O, d ), y~t)) dg~ 

p l=l gB 

(6) 

:.." ~" . . .  

{100000} 
(a) 

{110000} 
(b) 

Fig. 1. Pole figures of i-A182Fcls. Intensity levels are (in counts): 
(a) 1000, 1200, 1300, 1450 and (b) 700, 850, 950. The lowest level is 
shown as a dotted curve. 

¸ i> 

{100000} 
(a) 

{110000} 

(b) 

Fig. 2. Pole figures of d-A162Cu20Co15Si 3. Intensity levels are (in 
counts): (a) 1430, 1600, 1700, 1860 and (b) 1450, 1470, 1500. The 
lowest level is shown as a dotted curve. 



F(g'8) - - f ( ~ ,  ~ ,  Y~), 
t t - -1  t tO-1 t 

g~ = [go] gB[gB] go. 

instead of • (0 (0 (0 (0 (t) . (3) The matrix = , , is "t t g× gJ'(Y1 Y~ Y~) 
determined by g~ = [g~)]-I gs[g,]-lgCoO depending on the 
current position of the texture axis g~ in the external 
coordinate system. The F(g'8) function describes the 
spread of the texture-axis position and is defined by the 
general approach of (1)-(4): 

(7) 

{100000} 

Here, f ( y ' )  is a function of type (1), and g6 and gB ~ have 
the same sense as the corresponding matrices in (2). 

.... ,.:-iii!2!i: . . . . . .  

{lOOOOO} 
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{ 110000} 
{1100001 

{110001} 
Fig. S. Comparison of model pole figures (bottom) and experimental {110001} 

ones for i-Ale0Li30Cu~0 (Edagawa et al., 1991) (top) for axial texture Fig. 4. Hypothetical model pole figures for a case of limited fibre 
with an anisotropic spread of the texture axis. texture, a~ = 8, a 2 = 16 and a 3 = 0 °. 
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Now, (6) and (7) allow the axial textures to be 
simulated with an anisotropic spread of texture axes that 
is experimentally observed in the melt-spun quasicrys- 
tals. The axial textures were simulated by setting 
0-2-  c~. In this case, the 0" 3 value has no sense and 
may be chosen as arbitrary. In Fig. 3, the { 100000}, 
{110000} and { 110001} model pole figures along with 
the experimental pole figures for i-A160Li30CUlo 
(Edagawa et al., 1991), which form the basis for the 
numerical approximation, are presented. Fitted values of 
model parameters are 0" 1 = 7 ° and o" 2 = oo. The model is 
seen to agree well with the experimental data. Hetero- 
geneity of the pole density dispersion with respect to the 
axis observed in the {110000} and {110001} pole 
figures can be directly explained by the texture 
simulation, that is by the presence of the anisotropic 
dispersion of the texture axis. 

Strict axial symmetry of dispersion with respect to the 
texture axis may be violated and, thus, we must account 
for o- 2 5~ oo in (1). For example, a tendency towards the 
appearance of limited fibre textures may be traced in pole 
figures of i-m168SiaRusMn20 (Sugawara et al., 1989). To 
simulate such a texture type, we choose the following 
parameters: o" 1 - 8, 0" 2 = 16 and o- 3 -- 0 °. Model pole 
figures { 100000}, { 110000}, { 110001} and correspond- 
ing ODF are shown in Figs. 4 and 5, respectively. It is 
seen that the separate maxima in the pole figures are 
substantially overlapped owing to a high symmetry of the 
quasicrystals. In this case, the use of the ODF approach 
allows separate components to be identified with a higher 
degree of reliability. 

For the quasicrystal phases with an n-fold symmetry 
axis (n = 8, 10 and 12), the elementary cell in the 
ODF space transforms to 0 < q91 < zr/2, 0 < • < :r/2, 
0 < ~o 2 < 2rr/n. In this case, the ODF analysis may be 
carded out as in (1)-(3). 

Heretofore, textures of melt-spun quasicrystals have 
been considered. We found that the decagonal phase in 
the A162Cu20Co15Si 3 alloy produced by the conventional 
slow casting technique does not exhibit any texture. 
Nevertheless, is should be noted that the present analysis 
with an obvious correction of the ODF parameters can be 

t p l  ~ 

Fig. 5. Model ODF corresponding to the pole figures in Fig. 4. Intensity 
levels are: 1, 2, 5, 10, 15 in random distribution units. 

fully applied to textures that may accompany an arbitrary 
technical process of the quasicrystal fabrication. 

In conclusion, we note that this model of quasicrystal 
textures may serve as a 'touchstone' for numerical 
techniques of the ODF reproduction by diffraction data 
to exclude the ghost effects. Moreover, our approach to 
the analytical ODF description may be used to allow for 
texture contribution to anisotropy of physical properties 
of the quasicrystal materials, especially for the decagonal 
phases. Averaging of tensor values over the texture can 
be carded out similar to Divinski & Dnieprenko (1994). 
Asymmetry of texture-axis dispersion may play a crucial 
role in accurate anisotropy calculation and may result in a 
marked anisotropy of physical properties of decagonal 
quasicrystals even in the ribbon plane. 

This study was supported by the Ukrainian State 
Science and Technology Committee under grant no 
4.3/56. 
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